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Lipid Peroxidation in Adrenal and
Testicular Microsomes

by Walter C. Brogan, ill,* Philip R. Miles,** and Howard

D. Colby*

Studies were carried out to determine the actions of and interactions between ascorbate,
NADPH, Fe**, and Fe'™ on lipid peroxidation in adrenal and testicular microsomes, Ascorbate-
induced malonaidehyde production was maximal in adrenal and testicular microsomes at an
ascorbate concentration of 1 x 107°M, Fe’*, at levels between 107% and 1077}, produced
concentration-dependent increases in lipid peroxidation in adrenal and testicular microsomes;
Fe?™ had a far greater effect than Fe** inboth tissues. In liver microsomes, by contrast, Fe?* and
Fe** had quantitatively similar effects on lipid peroxidation, NADPH alone had no effect on
malonaldehyde production in adrenal or testicular microsomes, However, in the presence of
low Fe?* coancentrations (107°3), NADPH stimulated adrenal malonaldehyde production. The
stimulation of lipid peroxidation by NADPH plus low Fe?* was not demonsirable in testicular
microsemes nor in adrenal microsomes which had been heat-treated to inactivate microsomal
enzymes. Testicular malonaldehyde production was stimulated by NADPH if Fe?* (5 x 107 to {
x 10°M) was added to the incubation medium; the stimulation was net demonstrable in
heat-treated microsomes. Fe”* pius NADPH had litile effect on adrenal lipid peroxidation, Inthe
presence of high ¥e?™ levels (1073M), NADPH produced a concentration-dependent inhibition of
adrenal lipid peroxidation; the inhibition was fully demonstrable in heat-treated microsomes,
NADPH similarly inhibited ascorbate-induced lipid peroxidation in adrenal microsomes. In
testicular microsomes, NADPH did rot inhibit ascorbate or Fe® * -induced lipid peroxidation. The
results indicate that various endogenous substances may be important in the control of adrenal
and testicular lipid peroxidation and that the nature of the regulation differs from tissue to

tissue,

Introduction

The process of lipid peroxidation has been impli-
cated in the hepatotoxieity of ethanol and carbon
tetrachloride as well as in the toxic effects of many
other chemicals (2-3). Lipid peroxidation has been
shown to oceur in vitro in & wide variety of tissues
(4-6) but has been most extensively studied in the
microsomal fraetion of liver cells. Among the en-
dogenous substances known to stimulate lipid per-
oxidation in hepatic microsomes is NADPH (7). The
mierosemal enzyme, NADPH-cytochrome ¢ reduc-
tase, is required for NADPH enhancement of lipid
peroxidation in liver microsomes. Therefore, inac-
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tivation of microsomal enzymes blocks the stimul-
atory effect of NADPH on lipid peroxidation. Other
substances, including ascorbate and ferrous or
ferric ion, also initiate hepatic microsomal lipid
peroxidation, but non-enzymatically, and their ef-
fects, therefore, are unaltered by inactivation of
microsomal enzymes.

Among the endocrine tissues, lipid peroxidation
has been demonstrated in adrenocortical and tes-
ticular subeellnlar fractions (5). However, rela-
tively little is known about the role of endogenous
substances in controlling lipid peroxidation in
steroid-producing tissues. Many of the enzymes
involved in the production of steroid hormones are
membrane-bound cytochrome P-450-containing mixed
function oxidases. Since lipid peroxidation is a
membrane-damaging process, factors affecting lipid
peroxidation in the adrenal cortex or testis may
have significant effects on steroidogenesis in those
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tissues. The following studies were carried out,
therefore, to determine the actions of and interac-
tions between ascorbate, NADPH, and ferrous or
ferric ions on lipid peroxidation in adrenal and
testicular microsomes. Effects in the adrenal and
testes were compared with those in hepatic micro-
somes to determine if the factors affecting lipid
peroxidation in the three tissues were similar.

Methods

Male English short-hair guinea pigs weighing
approximately 1000 g were obtained from Camm
Research Institute, Wayne, N.J. Animals were
maintained under standardized conditions of light
(6:00 am-6:00 pm) and temperature (22°C}) on a diet
of Wayne Guinea Pig Diet and water ad libifum.
Guinea pigs were killed by decapitation between
8:00 and 9:00 am. Adrenals, liver, and testes were
quickly removed and placed in cold 1.15% KC1-0.054
Tris-HC] buffer (pH 7.4) on ice. Tissues were
trimmed free of connective tissue, weighed, and
homogenized in KClris buffer. Microsomes were
obtained by differential centrifugation as previously
described (8) and resuspended in 1.156% KCI-0.054
tris buffer (pH 7.4). In some experiments, micro-
somal enzymes were Inactivated by heating the
microsomal suspension at 70°C for 2 min. Enzyme
indctivation was confirmed by the absence of de-
tectable NADPH-cytochrome ¢ reductase activity.

Microsomal suspensions were incubated in 25 mt
Erlenmeyer flasks in a Dubnoff metabolic incubator
at 37°C for 60 min under air. Total volume in each
flask was 2.5 ml. Adrenal microsomes were incu-
hated at a concenlration of approximately 0.25 mg
protein/ml, testicular microsomes at approximately
0.50 mg protein/ml, and liver microsomes at
approximately 0.75 mg proteinsm!. The protein
concentrations employed were found to be optimal
for lipid peroxidation in each tissue. As indicated,
the following agents were added to the reaction
flasks prior to incubation: FeCl; (Fisher Scientific
Company, Fairlawn, N.J.), FeS0,, L-ascorbic acid,
and NADPH-type I (Sigma Chemical Company, St.
Louis, Mo.). Al of the effects of ferrous ion
presented in this report were obtained using FeSO,
as the source of Fe?*, However, essentially identical
results have also been obtained with FeCl,.

Malonaldehyde production, as measured by the
thiobarbituric acid test, served as an index of lipid
peroxidation. Malonaldehyde was measured accord-
ing to the method of Ottolenghi () as modified by
Hunter et al. (20). Following incubation, 2.0 ml
aliquots from each flask were transferred to centri-
fuge tubes containing 0.5 ml of 40% trichloroacetic
acid and 0.25 ml of 5N HCL. After mixing, (.5 ml of
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3 2% thiobarbiturie acid solution was added and the
samples were incubated for 20 min at 90°C. Follow-
ing incubation the samples were cooled in an ice
bath for 5 minutes and centrifuged at 30,000 g for 5
min in a Sorvall model S8-3 centrifuge. The amount
of malonaldehyde in each sample was determined
by measuring the optical density of the superna-
tants at 532 nm with a Gilford model 300-N spec-
trophotometer and by using a molar extinction
coefficient of 1.56 x 10° M- em! (11).

Results

Lipid peroxidation in both adrenal and testicular
microsomes was stimulated by the addition of
either ascorbate of ferrous (FeZt) ion to the incuba-
tion flasks (Table 1). The amount of lipid peroxida-
tion was dependent upon the concentration of Fet+
or ascorbate present in the reaction mixture. Mal-
onaldehyde production, when expressed per m! of
incubation medium, was similar in adrenal and
testes at all concentrations of Fe?* and ascorbate
tested {Table 1). However, since the concentration
of testicular microsomal protein incubated was
twice that of adrenal micrasomal protein, malonal-
dehyde production per mg of protein was greater in
adrenal than testicular microsomes. Ascorbate stim-
ulation was maximal in both tissues at a concentra-
tion of 1 % 10-4M and dropped off at higher or lower
concentrations. Increasing concentrationsof Fe?* up
to at least 1 X 10-3M caused increasing production
of malonaldehyde. Solubility limitations in the reac-
tion mixture prevented the use of higher concentra-
tions of Fe?*, Heat treatment of adrenal or testicular
microsomes did not alter the stimulatory effects of
Fe?+ or ascorbate (data not shown), indicating the
nonenzymatic nature of the stimulation by each.

The time courses for Fe?*- and ascorbate-induced
lipid peroxidation were similar in adrenal and
testicular microsomes. The time courses for adrenal
lipid peroxidation are shown in Figure 1. Fe?*-
induced lipid peroxidation continued to increase for
at least 90 min, while ascorbate-induced malonal-
dehyde production reached a maximum after about
30 min. We have established that neither adrenal
nor testicular microsomes metabolize malonalde-
hyde under the incubation conditions described.
Therefore, the time courses reflect only malonal-
dehyde production.

It has been reported that Fe?t and Fe?* are
equipotent stimuli of lipid peroxidation in rat liver
microsomes (12), The data in Table 2 indicate that
Fe?* and Fe®* also have similar effects on lipid
peroxidation in guinea pig liver microsomes. How-
ever, in both adrenal and testicular microsomes,
Fe2* was a much more potent stimulus for lipid
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Table 1. Effects of varying concentrations of ascorbate, Fe*, or NADF'H on malonaldehyde production by adrenal and testicular
microsomes.?

Malonaldehyde, nmole/ml

1x10% 5x10%M 1x10% 5% 10°M 1x10%M 5xW0*M  1x10°M

Ascorbate

Adrenal 1.1+0.3 3.0 0.2 4.0 = 0.3 6.7+ 0.2 74 =15 1.9=0.1 0.4+ 0.1
FTezzites 09 =01 LT=02  28=06 40+09  T5x20 6.5 = 0.4 4104
[

Adrenal 0.8 = 0.3 14x01 LT =01 1.5 + 0.2 2.8 = 0.1 5.7+ 0.7 12104
Testes 0.8 + 0.1 1.8+ 0.1 2.3 0.2 3.0 + 0.3 3.6 = 06 7804 11805
NADPH

Adrenal NDY ND ND ND ND 0101 0.1 0.1
Testes ND ND ND ND ND 0.7 0.5 0.7+03

 Malonaldehyde was measured by the thicbarbituric acid test followmg a 60 min. aerobic incubation at 37°C. Values are the means
= BE of 4-6 determinations at various concentrations of ascorbate, Fe "%, or NADPH.
B ND = not detectable.

[N
Z)

NADPH alone did not stimulate lipid peroxida-
tion in adrenal or testicular microsomes (Table 1).
However, when low levels (1 x 10-%) of Fe?* were
added to the reaction mixture, NADPH produced
concentration-dependent increases in lipid perox-
idation in adrenal microsomes (Fig. 2). This stimul-
atory effect of NADPH in the presence of low levels
of FeZ* was not demonstrable in testicular micro-
somes, nor was it demonstrable in heat-treated
adrenal microsomes (Fig. 2), suggesting an enzy-

® Ascorbate
A et

7.5F

CONCENTRATION OF MOA {nmoles/mi}

TIME (minules)

FiGURE 1. Time-courses for (A) ferrous ion (107°M) and (®)
ascorbate (107 M) stimulation of malonaldehyde (MDA) pro-
duction by adrenal microsomes (0.25 mg proteinml) incu-
bated aerobically at 37°C. Values are the means = SE of 4-6
determinations.

peroxidation than Fe3+ (Table 2). Fe?t-induced mal-
onaldehyde production, when expressed per milli-
gram of microsomal protein, in adrenal was approx-
imately five times that in liver and twice as great in
testes as in liver.

Table 2. Effects of varying concentrations of Fe?

*, or Fe*™

matic process. Testicular malonaldehyde produc-
tion was stimulated by NADPH if Fe3+ (5 x 10-5to 1
x 10M) was added to the incubation medium
(Table 8). In adrenal microsomes, by contrast, Fe3*
(at concentrations from 1 x 10-5 to 1 x 10-3M) only
slightly enhanced NADPH-induced lipid peroxida-
tion (data not shown). The interaction between Fel+
and NADPH in testicular microsomes, like that
between Fe?* and NADPH in adrenal mierosomes,
was not demonstrable in heat-treated microsomes
(Table 3 and Fig. 2, respectively), suggesting that
enzymatic reactions were required.

on malonaldehyde production by liver, adrenal and testicular

microsomes,?

Malonaldehyde, nmole/ml

1% 105 1 x 10°M 5 x 1M 5 x 108

Liver
Fe?t 1.7+ 0.2 1.5+ 0.2 1.8+ 02 6.8 = 0.1
Felt 1.6 0.2 1.8 +02 22x04 55 =038

Adrenal

Fe?* 1.8 = 0.2 2.8 %02 5.9 +08 124 + 0.5
Fel* 0.6 = 0.1 6.9 + 0.1 1.0 = 0.1 1.7+ 02

Testes
Fet*t 2302 3.6 +0.6 7.8 + 0.4 11.8 = 0.5
Fe?* 0.8 0.1 0.9 %01 1.9+0.1 1.8 £ 0.2

‘% Microsomes were incubated aerobically at 87°C for 60 min at optimal protein concentrations for lipid peroxidation (liver at
approximately 0.75 mg/ml; adrenal at 0.25 mg/ml; testes at .50 mg/ml). Values are the means + SE of 4-6 determinations.
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Figure 2. Concentration-dependent stimulation of malonalde-

hyde (MDA) production by NADPH in the presence of 10°M
ferrous ion in normal or heat-treated adrenal microsomes
(0.25 mg protein/ml). Malonaldehyde was determined follow-
ing a 60 min aerobic incubation at 37°C. Values are the
means * SE of 4-6 determinations.

In contrast to the stimulatory effects of NADPH
on lipid peroxidation in adrenal microscmes in the
presence of low Fe?* concentrations, in the presence
of highlevels (1 x 102M) of Fe?+, NADPH inhibited
lipid peroxidation (Fig. 3). This inhibition of Fe?*
-induced lipid peroxidation by NADPH was
concentration-dependent and fully demonstrable in
heat-treated microsomes (Fig. 3), indicating a non-
enzymatic effect. NADPH similarly inhibited as-
corbate (1 x 10~*M) - induced adrenal microsomal
lipid peroxidation. In testicular microsomes, Fe2+ (1
x 10-3M)-induced lipid peroxidation was only sligh-
tly diminished by NADPH and ascerbate-induced
malonaldehyde production in testicular mierosomes
was unaffected by any concentration of NADPH
tested (data not shown).

Discussion

The results demonstrate that a number of endog-
enous substances previously found to affect lipid

peroxidation in hepatic microsomes also influence
lipid peroxidation in steroidogenic tissues, but that
the specific effects vary from one tissue to another,
An absolute dependence on non-heme iron for lipid
peroxidation in hepatic microsomes was first sug-
gested by Wills (12) and recently confirmed by
Kornbrust and Mavis (73). In our studies, ferrous
(Fe?*) ion stimulated malonaldehyde production in
guinea pig liver, adrenal, and testicular microsomes
in vitro. The extent of lipid peroxidation was
directly proportional to the Fe2+ concentration in all
three tissues, but the amount of malonaldehyde
produced varied with the source of the microsomes.
Malonaldehyde production, when expressed per
milligram of microsomal protein, was greatest in
the adrenal, perhaps as a result of the high concen-
tration of unsaturated fatty acids in the adrenal
cortex (14). The extent of Fe2t-induced testicular
microsomal lipid peroxidation was greater than
that in hepatic microsomes but less than adrenal
lipid peroxidation.

In both adrenal and testicular mierosomes,
ascorbate-induced malonaldehyde production was
maximal at an ascorbate concentration of 1 x
10M. Higher concentrations resulted in a rapid
decline in lipid peroxidation in the adrenal and a
more gradual decline in testicular lipid peroxida-
tion, probably as a result of the antioxidant proper-
ties of ascorbate being manifested. The normal
level of ascorbate in the guinea pig adrenal is nearly
1 x 10-2M, a concentration at which ascorbate may
exert primarily antioxidant effects (15,16). Howev-
er, upon stimulation by ACTH, the ascorbate
concentration of the adrenal cortex decreases to
levels which may promote lipid peroxidation (17).
The normal level of ascorbate in the guinea pig
testis is approximately 1 x 10-3M (15), a concentra-
tion which we have found to stimulate lipid perox-
idation in testicular microsomes.

As previously reported for rat liver microsomes,
Fe?* and Fe?+ had similar effects on lipid perox-:

Table 3. Effects of varying concentrations of NADPH on malonaldehyde production by normal or heat-treated testicular

microsomes in the presence or absence of Fe?* (1 x 107M).2

Malonaldehyde, nmole/ml

0 1 x 10750 5 % 107°M 1 x 107°M b x 107*M 1 % 107%M
NADPH NADPH NAPDH NADPH NADPH
Normal
microsomes
—Fe?* 0.4 = 0.1 0.5 0.1 0.5 +0.1 0.4= 0.1 09+0.1 0.9x 0.1
+Fe?* 1.6 = 0.2 1.6x 0.1 4.2 + (.2 6.9 =~ 0.3 11.0 = 0.7 12,7 = 0.2
Heat-treated
microsomes
+Fe?t 1.6 = 0.1 L5 % 0.1 1.7+ 0.1 1.8 = 0.1 1802 2.0 0.1

# Malonaldehyde was determined following a 60-min aerobic incubation at 37°C, Values are the means + SE of 4-6 determinations.
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Figure 3. Effects of NADPH on ferrous ion {1073M) stimula-
tion of malonaldehyde (MDA) production in normal or
heat-treated adrenal microsomes (0.25 mg protein/ml).
Malonaldehyde was determined following a 60 min aerobic
incubation at 37°C. Values are the means = SE of 4-6
determinations.

idation in guinea pig hepatic microsomes. However,
Fe?+ had virtnally no effect on lipid peroxidation in
adrenal or testicular microsomes. It has been
postulated that Fe®+ must be converted to FeZ* to
initiate lipid peroxidation (18). If that hypothesis is
correct, the capacity for reducing Fed * must be much
greater in hepatic than in adrenal or testicular
microsomes. The reason for these differences is
presently unknown.

The results of numerous studies have established
that NADPH is a potent stimulus for lipid perox-
idation in hepatic microsomes (7). Recently, Korn-
brust and Mavis have proposed that the role of
NADPH in lipid peroxidation is to maintain suf-
ficient levels of iron in the reduced form to stimu-
late lipid peroxidation (13). Our observation that
NADPH did not stimulate lipid peroxidation in
adrenal or testicular microsomes unless exogenous
iron was also present tends to support that hypoth-
esis. However, with adrenal microsomes, NADPH
produced far greater stimulation of lipid peroxida-
tion in the presence of low (1 x 10° M) Fe?* than
Fe®*+, whereas with testicular microsomes the opposite
pertained. The stimulatory effects of NADPH (in
the presence of low Fe2+ or Fe3+) on lipid peroxida-
tion were not demonstrable in either adrenal or
testes after heat treatment or microsomes, sug-
gesting the involvement of enzymatic processes.
Further studies will be necessary to determine the
mechaniams responsible for the differential effects
of Fe2+ and Fe?* on NADPH-induced lipid peroxida-
tion in adrenal and testicular microsomes.

In contrast to its stimulatory effects on lipid
peroxidation in the presence of small amounts of
iron, NADFPH produced a concentration-dependent
inhibition of adrenal malonaldehyde production when
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lipid peroxidation was initiated by high levels (1 x
102M) of Fe?+ or by ascorbate (1 x 10-*M). This
inhibitory effect of NADPH, which was not seen in
hepatic or testicular microsomes, was fully demon-
strable in heat-inactivated adrenal microsomes,
suggesting a non-enzymatic mechanism. We pre-
viously found that NADPH could inhibit the Fe?+-
induced oxidation of linoleic acid, indicating that
NADPH may act as a direct antioxidant. Thus,
NADPH appears to exert opposing actions on
adrenal lipid peroxidation, the net effect depending
on the level of iren present. It is not clear why the
actions of NADPH on adrenal lipid peroxidation
differ in the presence of high and low iron eoncen-
trations. However, since the stimulatory effect of
NADPH requires microsomal enzyme activity, it is
possible that high iron concentrations inhibit micro-
somal enzymes, shifting the balance in favor of the
antioxidant effects of NADPH. Further studies are
also necessary to determine why the inhibitory
effects of NADPH on adrenal lipid peroxidation are
not demonstrable in testicular microsomes under
the same experimental conditions.

Although these studies indicate that interactions
between a number of substances nermally found in
the adrenal cortex and testes can have substantial
effects on lipid peroxidation in those tissues, the
significance of lipid peroxidation in stercid-producing
cells has yet to be established. Many of the enzymes
required for stervidogenesis are membrane-bound
mixed function oxidases, and the membrane de-
struction resulting from excessive lipid peroxida-
tion is known to compromise the activities of such
enzymes. It is possible, therefore, that lipid perox-
idation could eontribute to the control of steroid
hormone synthesis and release. Further investiga-
tions are now needed into the regulation of lipid
peroxidation in steroidogenic tissues and its rela-
tionship to hormone production and secretion.
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